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Compressing the optical field to the atomic scale opens up possibilities for directly observing 

individual molecules, offering innovative imaging and research tools for both physical and life 

sciences. However, the diffraction limit imposes a fundamental constraint on how much the optical 

field can be compressed, based on the achievable photon momentum [1,2]. In contrast to dielectric 

structures, plasmonics offer superior field confinement by coupling the light field with the oscillations 

of free electrons in metals [3–6]. Nevertheless, plasmonics suffer from inherent ohmic loss, leading 

to heat generation, increased power consumption and limitations on the coherence time of plasmonic 

devices [7,8]. Here we propose and demonstrate singular dielectric nanolasers showing a mode 

volume that breaks the optical diffraction limit. Derived from Maxwell’s equations, we discover that 

the electric-field singularity sustained in a dielectric bowtie nanoantenna originates from divergence 

of momentum. The singular dielectric nanolaser is constructed by integrating a dielectric bowtie 

nanoantenna into the centre of a twisted lattice nanocavity. The synergistic integration surpasses the 

diffraction limit, enabling the singular dielectric nanolaser to achieve an ultrasmall mode volume of 

about 0.0005λ3 (λ, free-space wavelength), along with an exceptionally small feature size at the 1- 

nanometre scale. To fabricate the required dielectric bowtie nanoantenna with a single-nanometre gap, 

we develop a two-step process involving etching and atomic deposition. Our research showcases the 

ability to achieve atomic-scale field localization in laser devices, paving the way for ultra-precise 

measurements, super-resolution imaging, ultra-efficient computing and communication, and the 

exploration of light–matter interactions within the realm of extreme optical field localization. 
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